Дипломная работа

от 20 дней
от 9999 рублей

Курсовая работа

от 10 дней
от 1999 рублей

Реферат

от 3 дней
от 699 рублей

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Диссертация

Сроки и стоимость индивидуальные

Главная - Прикладная математика - Квадратичная аппроксимация функции Лагранжа

Квадратичная аппроксимация функции Лагранжа Прикладная математика . Курсовая

  • Тема: Квадратичная аппроксимация функции Лагранжа
  • Автор: Дмитрий
  • Тип работы: Курсовая
  • Предмет: Прикладная математика
  • Страниц: 32
  • Год сдачи: 2006
  • ВУЗ, город: Харковский Национальный Университет Радиоэлектроники
  • Цена(руб.): 1500 рублей

Заказать персональную работу

Выдержка

Исследуется вопрос об использовании вторых производных и функций Лагранжа при формулировке подзадач квадратичного программирования.
Результатом выполнения задания является оптимальное решение задачи нелинейного программирования, которое было получено с помощью использования квадратичной аппроксимации функции Лагранжа.

Введение
На протяжении всей своей истории люди при необходимости принимать решения прибегали к сложным ритуалам. Они устраивали торжественные церемонии, приносили в жертву животных, гадали по звёздам и следили за полётом птиц. Они полагались на народные приметы и старались следовать примитивным правилам, облегчающим им трудную задачу принятия решений. В настоящее время для принятия решения используется новый и, по-видимому, более научный «ритуал», основанный на применении электронно-вычислительной машины. Без современных технических средств человеческий ум, вероятно, не может учесть многочисленные и многообразные факторы, с которыми сталкиваются при управлении предприятием, конструировании ракеты или регулировании движения транспорта. Существующие в настоящее время многочисленные математические методы оптимизации уже достаточно развиты, что позволяет эффективно использовать возможности цифровых и гибридных вычислительных машин. Одним из этих методов является математическое программирование, включающее в себя как частный случай нелинейное программирование, типичными областями применение которого является прогнозирование, планирование промышленного производства, управление товарными ресурсами, контроль качества выпускаемой продукции, планирование обслуживания и ремонта, проектирование технологических линий (процессов), учёт и планирование капиталовложений.
Сегодня имеется большое множество алгоритмов решения задач нелинейного программирования, одним из которых является метод квадратичной аппроксимации с использованием вторых производных и функции Лагранжа при формулировке подзадач квадратичного программирования. Использовать квадратичную аппроксимацию для функции Лагранжа было предложено зарубежными математиками
Johnson R.C., Wilde D.J. и Reklaitis G.V., однако эта идея не получила широкого распространения.
Целью данного курсового проекта является овладение основными шагами метода квадратичной аппроксимации функции Лагранжа при решении задачи квадратичного программирования.
В первой части этой работы «Теоретические сведения» приведён основной теоретический материал по тематике «Квадратичная аппроксимация функции Лагранжа». Во второй части «Вычислительная часть» решён, с использование ПЭВМ, пример, иллюстрирующий основные шаги алгоритма описанного в первой части.

Содержание

ВВЕДЕНИЕ 5
1. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 6
1.1 ЗАДАЧА НП И ЕЁ ОПТИМАЛЬНОЕ РЕШЕНИЕ 6
1.1.1 Общая задача НП 6
1.1.2 Аппроксимация функций 6
1.1.3 Критерии оптимальности в задачах с ограничениями 7
1.1.3.1 Множители Лагранжа 7
1.1.3.2 Условие Куна-Таккера 8
1.1.3.3 Теорема Куна-Таккера 9
1.1.3.4 Условия оптимальности второго порядка 9
1.1.4 Метод квадратичной аппроксимации функции Лагранжа 11
1.1.5 Использование штрафных функций 13
1.1.6 Одномерная минимизация функций 14
2.ВЫЧИСЛИТЕЛЬНАЯ ЧАСТЬ 16
2.1 ЗАДАНИЕ 16
2.2 РЕШЕНИЕ 16
2.2.1 Решение данной задачи графо-аналитическим методом 16
2.2.2 Решение данной задачи методом квадратичной аппроксимации для функции Лагранжа с использованием ЭВМ 17
2.2.3 Сравнение результатаов 30
ВЫВОД 31
СПИСОК ЛИТЕРАТУРЫ 32

Литература

1.Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике. Ч. 1.  М.: Мир, 1986.  347 с.
2.Реклейтис Г., Рейвиндран А., Рэгсдел К. Оптимизация в технике. Ч. 2.  М.: Мир, 1986.  318 с.
3.Химмельблау Д. Прикладное нелинейное программирование.  М.: Мир, 1975.  534 с.
4.Методические указания к курсовой работе по дисциплине Методы оптимизации для студентов дневной формы обучения специальностей Прикладная математика, Системный анализ и управление / Сост. Ю.М. Бородавка - Харьков: ХТУРЭ, 1999. - 24 с.
5.Ануфриев И.Е. Самоучитель MatLab 5.3/6.x СПб.: БХВ-Петербург, 2002. 736 с.

Форма заказа

Напрмер, Экономика

Похожие работы

Название Цена
Методы линейной аппроксимации. Методы отсекающих плоскостей Келли и условного градиента 1500
Методы квадратичной аппроксимации. Метод переменной метрики для задач условной оптимизации 1500
Дифференциальный алгоритм решения общей задачи математического программирования. Метод Франка-Вулфа 1500
Модели целочисленного булевого программирования. Алгоритм последовательного анализа вариантов решения 1500
Метод проекции градиента (метод Розена) для решения задач нелинейного программирования 1500
Решение задач целочисленного программирования методами ветвей и границ и частичного перебора 1500
Задача Жуковского о полете планера 1500
Курсовая работа по прикладной математике 1500
Численные методы 1500
Линейное программирование: постановка задач и графическое решение 1500

© 2010-2017, Все права защищены. Принимаем заказы по всей России.