Дипломная работа

от 20 дней
от 9999 рублей

Курсовая работа

от 10 дней
от 1999 рублей

Реферат

от 3 дней
от 699 рублей

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Диссертация

Сроки и стоимость индивидуальные

Главная - Высшая математика - Несобственные интегралы

Несобственные интегралы Высшая математика . Реферат

  • Тема: Несобственные интегралы
  • Автор: таня
  • Тип работы: Реферат
  • Предмет: Высшая математика
  • Страниц: 15
  • Год сдачи: 2007
  • ВУЗ, город: Брест
  • Цена(руб.): 500 рублей

Заказать персональную работу

Выдержка

При введении понятия определенного интеграла вида предполагалось, что выполняются следующие условия:
1. пределы интегрирования и являются конечными;
2. подынтегральная функция ограничена на отрезке .
В данном случае определенный интеграл называется собственным.
Другими словами, определенный интеграл был введен для ограниченных на отрезке функций.
Естественно распространить это понятие на случай бесконечных промежутков и бесконечно больших функций.
Если хотя бы одно из условий 1.- 2. не выполняется, то интеграл называется несобственным.
В данной работе рассмотрим несобственные интегралы по неограниченному промежутку и от неограниченной функции и методы исследования их на сходимость.
Найдем условия сходимости и расходимости несобственного интеграла

Подынтегральная функция терпит бесконечный разрыв при .

Таким образом:
a) если , то
b) если то .
Если , то .
Вывод: данный интеграл сходится при и расходится при .
Пример 2.
Исследовать при каких значениях сходится несобственный интеграл
.
Если , то

Следовательно, если , то несобственный интеграл расходится.
Если то

Этот предел будет бесконечным при или ; он будет равен постоянной при или . Итак данный интеграл сходится при
Пример 3.
Исследовать при каких значениях сходится несобственный интеграл
.
Находим .
Данный предел будет бесконечным при или ; он будет равен при или .
Если , то , следовательно, при интеграл расходится.

Содержание

При введении понятия определенного интеграла вида предполагалось, что выполняются следующие условия:
1. пределы интегрирования и являются конечными;
2. подынтегральная функция ограничена на отрезке .
В данном случае определенный интеграл называется собственным.
Другими словами, определенный интеграл был введен для ограниченных на отрезке функций.
Естественно распространить это понятие на случай бесконечных промежутков и бесконечно больших функций.
Если хотя бы одно из условий 1.- 2. не выполняется, то интеграл называется несобственным.
В данной работе рассмотрим несобственные интегралы по неограниченному промежутку и от неограниченной функции и методы исследования их на сходимость.
Найдем условия сходимости и расходимости несобственного интеграла

Подынтегральная функция терпит бесконечный разрыв при .

Таким образом:
a) если , то
b) если то .
Если , то .
Вывод: данный интеграл сходится при и расходится при .
Пример 2.
Исследовать при каких значениях сходится несобственный интеграл
.
Если , то

Следовательно, если , то несобственный интеграл расходится.
Если то

Этот предел будет бесконечным при или ; он будет равен постоянной при или . Итак данный интеграл сходится при
Пример 3.
Исследовать при каких значениях сходится несобственный интеграл
.
Находим .
Данный предел будет бесконечным при или ; он будет равен при или .
Если , то , следовательно, при интеграл расходится.

Литература

1. Ильин В.А., Позняк Э.Г. Основы математического анализа. ч.1. М., Наука, 1980.
2. Кудрявцев Л.Д. Краткий курс математического анализа. М., Наука, 1989.
3. Зорич В.А. Математический анализ.Ч.1.- М., Наука, 1984.
4. Гусак А.А., Гусак Г.М., Ьричикова Е.А. Справочник по высшей математике.- Мн., ТетраСистемс, 2004.

Форма заказа

Напрмер, Экономика

Похожие работы

Название Цена
Несобственные интегралы 500
Функции 2-х переменных. Предел и непрерывность функции переменных.Дискретные и непрерывные случайные величины. Функция распределения и её свойства. 500
СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ И РЕШЕНИЕ ЗАДАЧ 500
Модель Леонтьева 500
Математика - наука или язык 500
Биография и вклад в развитие математики Бируни Абу-Рейхан Мухаммед ибн-Ахмед аль-Бируни. 500
История некоторых базовых понятий математического анализа и векторного исчисления 500
Академик С.М. Никольский 500
Метод наименьших квадратов 500
История криптографии 500

© 2010-2017, Все права защищены. Принимаем заказы по всей России.