Дипломная работа

от 20 дней
от 9999 рублей

Курсовая работа

от 10 дней
от 1999 рублей

Реферат

от 3 дней
от 699 рублей

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Диссертация

Сроки и стоимость индивидуальные

Главная - Программирование - Разработка алгоритмического и программного обеспечения для решения графовых задач

Разработка алгоритмического и программного обеспечения для решения графовых задач Программирование . Курсовая

  • Тема: Разработка алгоритмического и программного обеспечения для решения графовых задач
  • Автор: Юлия
  • Тип работы: Курсовая
  • Предмет: Программирование
  • Страниц: 23
  • Год сдачи: 2009
  • ВУЗ, город: ОМГТУ
  • Цена(руб.): 1200 рублей

Заказать персональную работу

Выдержка

Введение

В последние годы значительно возросла популярность теории графов ветви дискретной математики. Графы встречаются во многих областях под разными названиями: "структуры" в гражданском строительстве, "сети" в электронике, "социограммы" в социологии и экономике, "молекулярные структуры" в химии, "дорожные карты", электрические или газовые распределительные сети и т. д.
Родившись при решении головоломок и игр, таких, например, как задача о кенигсбергских мостах и игра Гамильтона, теория графов стала мощным средством исследования и решения многих задач, возникающих при изучении больших и сложных систем.
Несмотря на разнообразие систем, представимых с помощью графов, можно выделить типовые графовые задачи.
Первая из задач, решаемых на графах задача поиска кратчайшего пути между вершинами. Задача поиска кратчайших путей в графе (Shortest Path Problem) в общем случае заключается в следующем:
Заданы n вершин графа (узлов сети) v1, v2, .. vn и целые длины дуг между ними. Чему равна наименьшая возможная длина пути, ведущего из vi в vj, для всех i и j?
Если длины дуг неотрицательны, то можно использовать, например, алгоритм Дейкстры, если есть отрицательные длины, но нет циклов отрицательного веса (если такие циклы есть то оптимального решения очевидно не существует), то можно использовать алгоритм Флойда-Уоршолла.
Вторая распространенная задача задача нахождения минимального остовного дерева графа. Задача о минимальном остовном дереве (В англоязычной литературе «Minimum Spanning Tree»), заключается в следующем: задан связный неориентированный граф G=(V,E), где V множество вершин, |V|=n, E множество ребер между ними, и весовая функция .
Иными словами, есть n вершин v1, v2, .. vn и положительные целые веса дуг между ними. (Можно вводить веса на ребрах, как ).
Чему равен наименьший возможный вес остовного дерева? Т.е., требуется найти минимально возможное значение суммы где минимум берется по всем остовным деревьям на n вершинах, т. е. по всем множествам T из (n-1) дуг, связывающим все n вершин в единую сеть.
Для решения этой задачи можно применять алгоритм Прима или алгоритм Краскала (Kruskal).
В рамках данной работы более подробно будут рассмотрены алгоритм Дейкстры (на его основе будет написан программный продукт для поиска кратчайшего пути между вершинами графа) и алгоритм Прима.

Содержание

Содержание
Введение 4
Описание алгоритмов 6
Алгоритм Дейкстры поиска кратчайшего пути между вершинами графа 6
Алгоритм Прима поиска минимального остовного дерева в графе 8
Реализация алгоритмов 9
Тестирование алгоритмов 12

Литература

Список использованных источников

1. Алгоритм Дейкстры //Википедия. [Электронный ресурс]. Режим доступа: http://ru.wikipedia.org/wiki/Алгоритм_Дейкстры
2. Алексеев В.Е., Таланов В.А. Графы и алгоритмы. //Интернет университет информационных технологий. [Электронный ресурс]. Режим доступа: http://www.intuit.ru/department/algorithms/gaa/15/
3. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. М.: Бином, 2000. 960с.
4. Красиков И.В., Красикова И.Е. Алгоритмы просто как дважды два. М.: Эксмо, 2007. 256с.
5. Новиков Ф.А. Дискретная математика для программистов. СПб.: Питер, 2004. 368с.
6. Поиск минимального покрывающего дерева в графе (алгоритм Прима). [Электронный ресурс]. Режим доступа: http://www.software.unn.ac.ru/cluster/cgi-bin/index.cgi?id=101&work=10&topic=0
7. Рыбаков Г. Минимальные остовные деревья. //Дискретная математика: алгоритмы. [Электронный ресурс]. Режим доступа: http://rain.ifmo.ru/cat/view.php/theory/graph-spanning-trees/mst-2005

Форма заказа

Напрмер, Экономика

Похожие работы

Название Цена
Разработка базы данных Access для автоматизации работы мастерской по ремонту бытовой техники 1200
Интегрирование 1500
Интегрирование 1000
Нахождение минимума функции двух вещественных переменных в заданной области 1500
Программа на языке VBA ,которая вводит исходные данные,выполняет расчеты и выводит на экран 1500
Реализация модели дефрагментации свободных участков памяти, при выделении памяти динамическими разделами 1500
Программирование на VBA в среде MS EXEL 1500
Консольный архиватор 1100
Проектирование_многоразрядного_десятичного_сумматора_комбинационного_типа 1500
Программное и аппаратное обеспечение программы 1500

© 2010-2017, Все права защищены. Принимаем заказы по всей России.