Дипломная работа

от 20 дней
от 9999 рублей

Заказать

Курсовая работа

от 10 дней
от 1999 рублей

Заказать

Реферат

от 3 дней
от 699 рублей

Заказать

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Заказать

Диссертация

Сроки и стоимость индивидуальные

Заказать

Главная - Высшая математика - СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ И РЕШЕНИЕ ЗАДАЧ

СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ И РЕШЕНИЕ ЗАДАЧ Высшая математика. Реферат

  • Тема: СИСТЕМА ЛИНЕЙНЫХ УРАВНЕНИЙ МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ И РЕШЕНИЕ ЗАДАЧ
  • Автор: Юлия
  • Тип работы: Реферат
  • Предмет: Высшая математика
  • Страниц: 12
  • Год сдачи: 2008
  • ВУЗ, город: Москва
  • Цена(руб.): 500 рублей

Заказать персональную работу

Выдержка

3. Формулы Крамера
Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (3), т.е. определитель матрицы А
D = det (ai j)
и n вспомогательных определителей D i (i= ), которые получаются из определителя D заменой i-го столбца столбцом свободных членов.
Формулы Крамера имеют вид:
D × x i = D i ( i = ). (4)
Из (4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:
x i = D i / D.
Если главный определитель системы D и все вспомогательные определители D i = 0 (i= ), то система имеет бесчисленное множество решений. Если главный определитель системы D = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.
Пример 4. Решить методом Крамера систему уравнений:
x1 + x2 + x3 + x4 = 5,
x1 + 2x2 - x3 + 4x4 = -2,
2x1 - 3x2 - x3 - 5x4 = -2,
3x1 + x2 +2x3 + 11 x4 = 0.
Решение. Главный определитель этой системы

Содержание

Содержание


1. Критерий совместности Кронекера-Капелли 3
2. Метод Гаусса 6
3. Формулы Крамера 7
4. Матричный метод 9
5. Системы линейных уравнений общего вида 10
Список литературы 13













1. Критерий совместности Кронекера-Капелли
Система линейных уравнений имеет вид [1]:
a11 x1 + a12 x2 +... + a1n xn = b1,
a21 x1 + a22 x2 +... + a2n xn = b2, (1)
... ... ... ...
am1 x1 + am1 x2 +... + amn xn = bm.
Здесь аi j и bi (i = ; j = ) - заданные, а xj - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (1) в виде: AX = B, (2)
где A = (аi j) - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X = (x1, x2,..., xn)T,
B = (b1, b2,..., bm)T - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.
Упорядоченная совокупность n вещественных чисел (c1, c2,..., cn) называется решением системы (1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2,..., xn каждое уравнение системы обратится в арифметическое тождество [2]; другими словами, если существует вектор C= (c1, c2,..., cn)T такой, что AC = B.
Система (1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.
Матрица образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.
,
Теорема Кронекера-Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и`A совпадают, т.е.
r(A) = r(`A) = r. [3]
Для множества М решений системы (1) имеются три возможности:
1) M = Æ (в этом случае система несовместна);
2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной);
3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (1) имеет бесчисленное множество решений.
Система имеет единственное решение только в том случае, когда
r(A) = n. При этом число уравнений - не меньше числа неизвестных (m³n); если m>n, то m-n уравнений являются следствиями остальных. Если 0

Литература

1. Ильин В. А., Позняк Э. Г. Линейная алгебра: Учебник для вузов. 6-е изд., стер. М.: ФИЗМАТЛИТ, 2004. 280 с.
2. Введение в алгебру. Кн.1. Основы алгебры, Кострикин А.И., ФИЗМАТЛИТ, 2004
3. Введение в алгебру. Кн.2 Линейная алгебра, Кострикин А.И., ФИЗМАТЛИТ, 2004

Форма заказа

Заполните, пожалуйста, форму заказа, чтобы менеджер смог оценить вашу работу и сообщил вам цену и сроки. Все ваши контактные данные будут использованы только для связи с вами, и не будут переданы третьим лицам.

Тип работы *
Предмет *
Название *
Дата Сдачи *
Количество Листов*
уточните задание
Ваши Пожелания
Загрузить Файлы

загрузить еще одно дополнение
Страна
Город
Ваше имя *
Эл. Почта *
Телефон *
  

Название Тип Год сдачи Страниц Цена
Модель Леонтьева Реферат 2008 11 500
Математика - наука или язык Реферат 2009 20 500
Биография и вклад в развитие математики Бируни Абу-Рейхан Мухаммед ибн-Ахмед аль-Бируни. Реферат 2009 10 500
История некоторых базовых понятий математического анализа и векторного исчисления Реферат 2009 21 500
Академик С.М. Никольский Реферат 2009 13 500
Метод наименьших квадратов Реферат 2010 18 500
История криптографии Реферат 2011 14 500
ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Реферат 2005 15 500
ТЕОРИЯ УСТОЙЧИВОСТИ Реферат 2005 14 500
ЛИНЕЙНОЕ ПРОГРАММИРОВАНИЕ Реферат 2005 14 500
курсовые, дипломные, контрольные на заказ скидки на курсовые, дипломные, контрольные на заказ

© 2010-2016, Все права защищены. Принимаем заказы по всей России.