Дипломная работа

от 20 дней
от 9999 рублей

Заказать

Курсовая работа

от 10 дней
от 1999 рублей

Заказать

Реферат

от 3 дней
от 699 рублей

Заказать

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Заказать

Диссертация

Сроки и стоимость индивидуальные

Заказать

Главная - Прикладная математика - Методы квадратичной аппроксимации. Метод переменной метрики для задач условной оптимизации

Методы квадратичной аппроксимации. Метод переменной метрики для задач условной оптимизации Прикладная математика. Курсовая

  • Тема: Методы квадратичной аппроксимации. Метод переменной метрики для задач условной оптимизации
  • Автор: Дмитрий
  • Тип работы: Курсовая
  • Предмет: Прикладная математика
  • Страниц: 22
  • Год сдачи: 2006
  • ВУЗ, город: Харьковский Национальный Университет Радиоэлектроники
  • Цена(руб.): 1500 рублей

Заказать персональную работу

Выдержка

Метод переменной метрики реализован в пакете Waterloo Maple 8. При расчете параметра использовался метод дихотомии одномерной минимизации на отрезке с точностью . Для выполнения 18-и итераций, в результате чего получено решение с точностью понадобилось около 12-и секунд. На рис. 1 изображены линии уровня целевой функции (заливка светлеет в сторону возрастания функции), функция ограничения, а также графическая иллюстрация итерационного процесса.
Следует отметить, что сходимость метода сильно зависит от начальной матрицы аппроксимации и слабо зависит от начального условия. Метод вычисления квазиньютоновской матрицы обеспечивает ее положительную определенность на каждой итерации алгоритма.
При далеко отстоящих точках, как, например, на рис.2 можно заметить, что алгоритм «стремится» занять множество точек, градиент целевой функции в которых наибольший, а уже потом выйти на точку решение задачи, при чем сказанное становится актуальнее при удалении начального приближения от оптимума (см. рис. 2). Такое поведение обусловлено методом решения: вблизи кривой ограничения влияние ограничения мало и метод развивается в сторону безусловного минимума, но с удалением процесса от ограничивающей функции сказывается наличие штрафной функции, метод быстро находит точку условного минимума.
Сказанное выше также можно заметить при смещении целевой функции по оси . Итерационный процесс на третьей итерации достигает наименьшего за историю процесса значения целевой функции, а затем возвращается в точку решения (см. рис. 3 и рис.4).
Интересной особенностью метода является его поведение в случае, когда начальное приближение расположено вблизи оптимума. Как видно из рис. 5 близость к решению слабо сказывается на сходимости: имеет место тот же скачок в сторону глобального минимума целевой функции со стремлением занять траекторию на градиенте.
В случае начального приближения внутри области в нижней полуплоскости наблюдается та же картина (см. рис. 6), но предварительно происходит выход из области ограничения.
Необходимо отметить также тот факт, что при размещении начального приближения в начале координат программа отказывается работать, так как не может решить систему уравнений, состоящую из производных функции Лагранжа задачи квадратичного программирования. Система оказывается несовместной, но даже при малом отклонении от начала координат в сторону увеличения переменной решение будет найдено за сравнительно малое число итераций (для начального значения решение было найдено за две итерации).
Эмпирическим путем установлен факт существования области начальных значений, для элементов которой метод находит точку . Эта область включает в себя отрицательный луч оси , а также некоторую область, содержащую этот луч. Причина данного явления заключается в том, что для этой области рано или поздно нарушается условие унимодальности для штрафной функции при поиске параметра (см. рис. 7). Для устранения этого недостатка нужно либо применить иную процедуру минимизации, подходящую для не унимодальных функций (по крайней мере, для ступенчатых, поскольку в исследованных случаях получается именно ступенчатая функция), либо же принять постоянно . При этом поведение процесса будет несколько беспорядочным, но верное решение все же будет найдено (рис. 8).Итак, в данном разделе были получены некоторые результаты по реализации и условиях работы метода переменной метрики, эмпирическим птем установлены и исследованы особенности работы метода. Метод эффективен для задач высокой размерности, поскольку при пересчете квазиньютоновской матрицы используется быстрый метод, сохраняющий ее положительную определенность. При реализации метода следует учитывать возможность неунимодальности промежуточной функции поиска , а также необходимость разрешимости задачи о седловой точке функции Лагранжа.

Содержание

Введение 5
Теоретическая часть
Общая задача нелинейного программирования 6
Методы безусловной оптимизации, использующие
квадратичную аппроксимацию 8
Алгоритм метода переменной метрики в задачах с ограничениями 10
Практическая часть
Решение с помощью Графоаналитического метода 13
Решение с помощью метода переменной метрики 15
Заключение 21
Список литературы 22

Литература

1.Д. Химмельблау. Прикладное нелинейное программирование. М.:Мир, 1975.534с.
2.Реклейтис Г., Рейвиндран А., Регсдел К. Оптимизация в технике. М.:1986 324с.
3.Зайченко Ю. П. Исследование операций: Учеб. Пособие для студентов вузов. Киев: Вища школа, 1979, 392с.

Форма заказа

Заполните, пожалуйста, форму заказа, чтобы менеджер смог оценить вашу работу и сообщил вам цену и сроки. Все ваши контактные данные будут использованы только для связи с вами, и не будут переданы третьим лицам.

Тип работы *
Предмет *
Название *
Дата Сдачи *
Количество Листов*
уточните задание
Ваши Пожелания
Загрузить Файлы

загрузить еще одно дополнение
Страна
Город
Ваше имя *
Эл. Почта *
Телефон *
  

Название Тип Год сдачи Страниц Цена
Дифференциальный алгоритм решения общей задачи математического программирования. Метод Франка-Вулфа Курсовая 2006 33 1500
Модели целочисленного булевого программирования. Алгоритм последовательного анализа вариантов решения Курсовая 2006 29 1500
Метод проекции градиента (метод Розена) для решения задач нелинейного программирования Курсовая 2006 29 1500
Решение задач целочисленного программирования методами ветвей и границ и частичного перебора Курсовая 2006 42 1500
Задача Жуковского о полете планера Курсовая 2005 15 1500
Курсовая работа по прикладной математике Курсовая 2001 17 1500
Численные методы Курсовая 2003 26 1500
Линейное программирование: постановка задач и графическое решение Курсовая 2000 17 1500
Линейное программирование: решение задач графическим способом Курсовая 2003 33 1500
Линейное и динамическое программирование Курсовая 2004 18 1500
курсовые, дипломные, контрольные на заказ скидки на курсовые, дипломные, контрольные на заказ

© 2010-2016, Все права защищены. Принимаем заказы по всей России.