Дипломная работа

от 20 дней
от 9999 рублей

Заказать

Курсовая работа

от 10 дней
от 1999 рублей

Заказать

Реферат

от 3 дней
от 699 рублей

Заказать

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Заказать

Диссертация

Сроки и стоимость индивидуальные

Заказать

Главная - Прикладная математика - 8 Задач по теории вероятности и мат статистике

8 Задач по теории вероятности и мат статистике Прикладная математика. Контрольная

  • Тема: 8 Задач по теории вероятности и мат статистике
  • Автор: alexpotter
  • Тип работы: Контрольная
  • Предмет: Прикладная математика
  • Страниц: 14
  • Год сдачи: 2010
  • ВУЗ, город: Томск
  • Цена(руб.): 500 рублей

Заказать персональную работу

Выдержка

1. Перечислим все возможные значения случайной величины X: 0, 1, 2, 3, 4, 5, 6.
Все испытания независимы, то есть вероятность того, что каждая из нефтеразведок не зависит от того, успешными или нет были другие нефтеразведки.
Вероятность «успеха» постоянна и равна p=0.2. Вероятность «неудачи» q=1-0.2=0.8.
Очевидно, что случайная величина X подчиняется биномиальному закону распределения с параметрами n=6 и p=0.2.

Содержание

Задача 1.
Условие задачи:
Для сигнализации на складе установлены три независимо рабо¬тающих устройства. Вероятность того, что при необходимости пер¬вое устройство сработает, составляет p1, для второго и третьего уст¬ройства эти вероятности равны соответственно p2 и p3. Найти веро¬ятность того, что в случае необходимости сработают:
а) все устройства;
б) только одно устройство;
в) хотя бы одно устройство.
p1=75%
p2=80%
p3=95%
Задача 2.
Условие задачи:
В партии, состоящей из n одинаково упакованных изделий, смешаны изделия двух сортов, причем k из этих изделии - первого сорта, а остальные изделия - второго сорта. Найти вероятность того, что взятые наугад два изделия окажутся;
а) одного сорта;
б) разных сортов.
n=40, k=25
Задача 3.
Условие задачи:
В магазине имеются телевизоры с импортными и отечест¬венными трубками в соотношении 2:9. Вероятность выхода из строя в течение гарантийного срока телевизора с импортной трубкой равна 0.005; с отечественной трубкой она равна 0.01.
а) Найти вероятность того, что купленный в магазине телевизор выдержит гарантийный срок.
б) Купленный телевизор выдержал гарантийный срок. Какова вероятность, что он с отечественной трубкой?
Задача 4.
Условие задачи:
Вероятность того, что в результате проверки изделию будет присвоен знак «изделие высшего качества» равна p.
1) На контроль поступило n изделий. Какова вероятность того, что знак высшего качества будет присвоен:
а) ровно m изделиям;
б) более чем k изделиям:
в) хотя бы одному изделию;
г) указать наивероятнейшее количество изделий, получивших знак высшего качества, и найти соответствующую ему вероятность.
2) . При тех же условиях найти вероятность того, что в партии из N изделий знак высшего качества получает:
а) ровно половина изделий;
б) не менее чем k1, но не более, чем k2 изделий.
n=6, p=0.2, m=3, k=4, N=28, k1=4, k2=14.
Задача 5.
Условие задачи:
В лотерее на каждые 100 билетов приходится m1 билетов с выигрышем a1 тыс. рублей, m2 билетов с выигрышем a2 тыс. рублей, m3 билетов с выигрышем a3 тыс. рублей и т.д. Остальные билеты из сотни не выигрывают.
Составить закон распределения величины выигрыша для вла¬дельца одного билета и найти его основные характеристики: математическое ожидание, дисперсию и среднее квадратическое отклоне¬ние. Пояснить смысл указанных характеристик.
a1=14; a2=12; a3=8; a4=5; a5=1;
m1=2; m2=8; m3=15; m4=20; m5=30;
Задача 6.
Условие задачи:
Вес изготовленного серебряного изделия должен составлять a граммов.
При изготовлении возможны случайные погрешности, в резуль¬тате которых вес изделия случаен, но подчинен нормальному закону распределения со средним квадратическим отклонением σ граммов.
Требуется найти вероятность того, что:
а) вес изделия составит от  до  граммов;
б) величина погрешности в весе не превзойдет  граммов по аб¬солютной величине.
a=60; σ=2; =56; =62; =6
Задача 7.
Условие задачи:
По итогам выборочных обследований для некоторой категории сотрудников величина их дневного заработка X руб. и соответст¬вующее количество сотрудников ni, представлены в виде интерваль¬ного статистического распределения.
а) Построить гистограмму относительных частот распределения.
б) Найти основные характеристики распределения выборочных данных: среднее выборочное значение, выборочную дисперсию и выборочное среднее квадратическое отклонение.
в) Оценить генеральные характеристики но найденным выбо¬рочным характеристикам.
г) Считая, что значения признака X в генеральной совокупности подчинены нормальному закону распределения, найти доверитель¬ный интервал для оценки математического ожидания (генерального среднего значения) с надежностью , считая, что генеральная дис¬персия равна исправленной выборочной дисперсии.
X 66-70 70-74 74-78 78-82 82-86 86-90
ni 7 15 22 18 5 3
Задача 8.
Условие задачи:
С целью анализа взаимного влияния прибыли предприятия и его издержек выборочно были проведены наблюдения за этими показа¬телями в течение ряда месяцев: X - величина месячной прибыли в тыс. руб.. Y - месячные издержки в процентах к объему продаж.
Результаты выборки сгруппированы и представлены в виде корреляционной таблицы, где указаны, значения признаков X и Y и количество месяцев, за которые наблюдались соответствующие пары значений названных признаков.
а) По данным корреляционной таблицы найти условные сред¬ние и .
б) Оценить тесноту линейной связи между признаками X и Y.
в) Составить уравнения линейной регрессии Y по X и X по Y.
г) Сделать чертеж, нанеся на него условные средине и найден¬ные прямые регрессии.
д) Оценить силу связи между признаками с помощью корреля¬ционного отношения.
Y\X 20 30 40 50 60 ny
5 3 3
10 5 4 9
15 4 2 6
20 5 4 5 14
25 3 1 6 10
30 3 3
nx 8 8 10 5 14 45

Литература

1. Смыслова З.А. Теория вероятности: Учебное пособие - Томск: ТМЦ ДО, 2005. - 231 с.
2. Смыслова З.А. Спецглавы математики. Практикум. Методические рекомендации - Томск: ТМЦДО, 2005. - 267 с.
3. Ерохина А.П. Байбакова Л.Н. Математика. Часть 1: Учебное пособие - Томск: ТМЦДО, 2004. - 257с.
4. Магазинников Л.И. Магазинников А.Л. Математика. Введение в математический анализ.: Учебное пособие - Томск: ТМЦ ДО, 2003. - 191 с.
5. Иванова С А Павский В А Математика. Часть 1: Учебное пособие - Томск: ТМЦДО, 2006. - Ч.1. - 137 с.
6. Смыслова З.А. Спецглавы математики. Пособие для ВУЗов - Томск: ТМЦДО, 2004. - 306 с

Форма заказа

Заполните, пожалуйста, форму заказа, чтобы менеджер смог оценить вашу работу и сообщил вам цену и сроки. Все ваши контактные данные будут использованы только для связи с вами, и не будут переданы третьим лицам.

Тип работы *
Предмет *
Название *
Дата Сдачи *
Количество Листов*
уточните задание
Ваши Пожелания
Загрузить Файлы

загрузить еще одно дополнение
Страна
Город
Ваше имя *
Эл. Почта *
Телефон *
  

Название Тип Год сдачи Страниц Цена
6 задач по высшей математике Контрольная 2009 7 500
6 Задач по высшей математике Контрольная 2010 9 500
6 задач по высшей математике Контрольная 2009 9 500
4 задачи по высшей математике Контрольная 2009 9 400
5 задач по высшей математике Контрольная 2009 9 500
5 задач по математике Контрольная 2010 9 400
11 задач по высшей математике Контрольная 2010 9 500
Математический анализ. 11 решенных заданий. Контрольная 2010 9 300
6 задач по теории вероятности Контрольная 2009 10 500
6 задач по высшей математике Контрольная 2010 10 500
курсовые, дипломные, контрольные на заказ скидки на курсовые, дипломные, контрольные на заказ

© 2010-2016, Все права защищены. Принимаем заказы по всей России.