Дипломная работа

от 20 дней
от 9999 рублей

Заказать

Курсовая работа

от 10 дней
от 1999 рублей

Заказать

Реферат

от 3 дней
от 699 рублей

Заказать

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Заказать

Диссертация

Сроки и стоимость индивидуальные

Заказать

Главная - Физика - Тонкое полукольцо радиуса R заряжено равномерно зарядом q. Найти модуль напряженности электрического поля в центре кривизны этого полукольца.

Тонкое полукольцо радиуса R заряжено равномерно зарядом q. Найти модуль напряженности электрического поля в центре кривизны этого полукольца. Физика. Контрольная

  • Тема: Тонкое полукольцо радиуса R заряжено равномерно зарядом q. Найти модуль напряженности электрического поля в центре кривизны этого полукольца.
  • Автор: Леонид
  • Тип работы: Контрольная
  • Предмет: Физика
  • Страниц: 7
  • Год сдачи: 2010
  • ВУЗ, город: УрГПУ (Екатеринбург)
  • Цена(руб.): 250 рублей

Заказать персональную работу

Выдержка

Задача №9. Найти потенциал на краю тонкого диска радиуса R, по которому равномерно распределен заряд с поверхностной плотностью σ.
Решение
Найдем потенциал в точке А на краю диска. Проведем из точки А пучок лучей до пересечения с краем диска. Угол между лучом (хордой) и диаметром диска, проходящим через точку А (см. рис.), равен от, а угол между соседними лучами - da. Поскольку а вписанный угол, длина
соответствующего луча равна. Проведем из точки А до пересечения с краем диска семейство окружностей
радиуса. Таким образом диск оказывается разделен на слои радиуса и толщины. Площадь такого слоя есть. Заряд слоя равен. Потенциал, создаваемый этим слоем. Потенциал в точке А найдем путем интегрирования по частям.

Содержание

Задача №1. Тонкое полукольцо радиуса R заряжено равномерно зарядом q. Найти модуль напряженности электрического поля в центре кривизны этого полукольца.

Задача №2. Тонкое непроводящее кольцо радиуса R заряжено с линейной плотностью λ = λ0cosφ, где λ0 - постоянная, φ - азимутальный угол. Найти модуль напряженности электрического поля: а) в центре кольца; б) на оси кольца в зависимости от расстояния х до его центра. Исследовать полученное выражение при х » R.

Задача №3. Шар радиуса R имеет положительный заряд, объемная плотность которого зависит только от расстояния r от его центра как ρ = ρ0 (1 - r/R), где ρ0 - постоянная. Полагая, что диэлектрическая проницаемость всюду равна единице, найти: а) модуль напряженности внутри и вне шара как функцию r; б) максимальное значение модуля напряженности Emax и соответствующее ему значение rm.

Задача №4. Система состоит из шара радиуса R, заряженного сферически симметрично, и окружающей среды, заполненной зарядом с объемной плотностью ρ = α/r , где α - постоянная, r - расстояние от центра шара. Найти заряд шара, при котором модуль напряженности электрического поля вне шара не зависит от r. Чему равна эта напряженность? Диэлектрическая проницаемость всюду равна единице.

Задача №5. Внутри шара, заряженного равномерно с объемной плотностью ρ, имеется сферическая полость (рис.). Центр полости смещен относительно центра шара на расстояние, характеризуемое вектором а. Найти напряженность Е внутри полости.

Задача №6. Имеются два плоских проволочных кольца радиуса R каждое, оси которых совпадают. Заряды колец равны q и -q. Найти разность потенциалов между центрами колец, отстоящими друг от друга на расстояние l.

Задача №7. Бесконечно длинная прямая нить заряжена равномерно с линейной плотностью λ. Вычислить разность потенциалов точек 1 и 2, если точка 2 находится дальше от нити, чем точка 1, в η = 2 раза.

Задача №8. Тонкое кольцо радиуса R имеет заряд q, неравномерно распределенный по кольцу. Найти работу электрических сил при перемещении точечного заряда q1 из центра кольца по произвольному пути в точку, находящуюся на оси кольца на расстоянии l от его центра.

Задача №9. Найти потенциал на краю тонкого диска радиуса R, по которому равномерно распределен заряд с поверхностной плотностью σ.

Задача №10. Заряд q равномерно распределен по объему шара радиуса R. Полагая диэлектрическую проницаемость всюду равной единице, найти потенциал: а) в центре шара; б) внутри шара, как функцию расстояния r от его центра.

Литература

Иродов И.Е. Задачи по общей физике: Учеб.пособие. - 2-е изд.,перераб.-М.: Наука. Гл.ред.физ.-мат.лит.,1988. - 416 с.,ил.

Форма заказа

Заполните, пожалуйста, форму заказа, чтобы менеджер смог оценить вашу работу и сообщил вам цену и сроки. Все ваши контактные данные будут использованы только для связи с вами, и не будут переданы третьим лицам.

Тип работы *
Предмет *
Название *
Дата Сдачи *
Количество Листов*
уточните задание
Ваши Пожелания
Загрузить Файлы

загрузить еще одно дополнение
Страна
Город
Ваше имя *
Эл. Почта *
Телефон *
  

Название Тип Год сдачи Страниц Цена
Потенциал электрического поля имеет вид φ = α(ху - z2), где α - постоянная. Найти проекцию напряженности электрического поля в точке М {2,2, Контрольная 2010 6 250
Бесконечно большая пластина из однородного диэлектрика с проницаемостью ε заряжена равномерно сторонним зарядом с объемной плотностью ρ. Толщина Контрольная 2010 7 250
Сферическая оболочка заряжена равномерно с поверхностной плотностью σ. Воспользовавшись законом сохранения энергии, найти модуль электрической силы на Контрольная 2010 6 250
Ток I течет вдоль длинной тонкостенной трубы радиуса R, имеющей по всей длине продольную прорезь ширины h . Найти индукцию магнитного поля внутри трубы, ес Контрольная 2010 5 250
Провод, имеющий форму параболы у = кх2 , находится в однородном магнитном поле с индукцией В, перпендикулярной плоскости параболы. Из вершины параболы в мо Контрольная 2010 6 250
Слабо расходящийся пучок нерелятивистских заряженных частиц, ускоренных разностью потенциалов U, выходит из точки А вдоль оси прямого соленоида. Пучок фоку Контрольная 2010 12 250
Найти добротность математического маятника длины l = 50 см, если за промежуток времени τ = 5,2 мин его полная механическая энергия уменьшилась в η Контрольная 2010 11 250
Плоский конденсатор с круглыми параллельными пластинами медленно заряжают. Показать, что поток вектора Пойнтинга через боковую поверхность конденсатора рав Контрольная 2010 12 250
Две когерентные плоские световые волны, угол между направлениями распространения которых φ « 1, падают почти нормально на экран. Амплитуды волн одинак Контрольная 2010 12 250
Определить длину волны монохроматического света, падающего нормально на дифракционную решетку с периодом d=2,2 мкм, если угол между направлениями на фраунг Контрольная 2010 10 250
курсовые, дипломные, контрольные на заказ скидки на курсовые, дипломные, контрольные на заказ

© 2010-2016, Все права защищены. Принимаем заказы по всей России.