Дипломная работа

от 20 дней
от 9999 рублей

Заказать

Курсовая работа

от 10 дней
от 1999 рублей

Заказать

Реферат

от 3 дней
от 699 рублей

Заказать

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Заказать

Диссертация

Сроки и стоимость индивидуальные

Заказать

Главная - Высшая математика - задачи ПО КУРСУ «ПРИКЛАДНАЯ МАТЕМАТИКА, 4 СЕМЕСТР»

задачи ПО КУРСУ «ПРИКЛАДНАЯ МАТЕМАТИКА, 4 СЕМЕСТР» Высшая математика. Курсовая

  • Тема: задачи ПО КУРСУ «ПРИКЛАДНАЯ МАТЕМАТИКА, 4 СЕМЕСТР»
  • Автор: Татьяна
  • Тип работы: Курсовая
  • Предмет: Высшая математика
  • Страниц: 12
  • Год сдачи: 2009
  • ВУЗ, город: Москва
  • Цена(руб.): 1500 рублей

Заказать персональную работу

Выдержка

Решение.
1.1) В общем виде задача может быть сформулирована следующим образом: предположим, предприятие или цех может выпускать 3 вида продукции, используя 4 вида ресурсов. При этом известно количество каждого вида ресурса, расход каждого вида ресурса на выпуск каждого вида продукции, прибыль, получаемая с единицы выпущенной продукции. Требуется составить такой план производства продукции, при котором прибыль, получаемая предприятием, была бы наибольшей.
Математическая модель задачи в следующем: найти производственную программу , максимизирующую прибыль:

при ограничениях по ресурсам:

где по смыслу задачи .
Получили задачу линейного программирования.
1.2) Для построения первого опорного плана приведем систему неравенств к системе уравнений:

.
Решим задачу симплексным методом. Переменные х5, х6, х7 будут базисными. Решим систему уравнений относительно базисных переменных:

Функцию цели запишем в виде: .
Полагая, что свободные переменные х1 = 0, х2 = 0, х3 = 0, x4 = 0, получим первый опорный план (0, 0, 0, 0, 110, 126, 114), z = 0, в котором базисные переменные х5 = 110, х6 = 126, х7 = 114, следовательно, товары не продаются и прибыль равна нулю, а ресурсы не используются.

Содержание

Вариант 0
Задание 1. Технологическая матрица затрат различных ресурсов на единицу каждой продукции А, вектор объемов ресурсов В и вектор удельной прибыли С при возможном выпуске четырех видов продукции с использованием трех видов ресурсов:
, , .
1.1. Сформулировать линейную производственную задачу и составить ее математическую модель.
1.2. Преобразовать данную задачу к виду основной задачи линейного программирования.
1.3. Решить ее симплексным методом, обосновывая каждый шаг процесса.
1.4. Найти оптимальную производственную программу.
1.5. Найти максимальную прибыль.
1.6. Найти остатки ресурсов различных видов и указать «узкие места» производства.
1.7. В последней симплексной таблице указать обращенный базис Q-1, соответствующий оптимальному набору базисных неизвестных.
1.8. Проверить выполнение соотношения: Н = Q-1B.
1.9. Если по оптимальной производственной программе какие-то два вида продукции не должны выпускаться, то в таблице исходных данных вычеркнуть соответствующие два столбца, составить математическую модель задачи оптимизации производственной программы с двумя оставшимися переменными, сохранив прежнюю нумерацию переменных и решить графически.
1.10. Сформулировать задачу, двойственную линейной производственной задаче, как задачу определения расчетных оценок ресурсов.
1.11. Найти решение двойственной задачи, пользуясь второй основной теоремой двойственности (о дополняющей нежесткости).
1.12. Указать оценку единицы каждого ресурса.
1.13. Указать минимальную суммарную оценку всех ресурсов.
1.14. Указать оценки технологий.

Литература

нет

Форма заказа

Заполните, пожалуйста, форму заказа, чтобы менеджер смог оценить вашу работу и сообщил вам цену и сроки. Все ваши контактные данные будут использованы только для связи с вами, и не будут переданы третьим лицам.

Тип работы *
Предмет *
Название *
Дата Сдачи *
Количество Листов*
уточните задание
Ваши Пожелания
Загрузить Файлы

загрузить еще одно дополнение
Страна
Город
Ваше имя *
Эл. Почта *
Телефон *
  

Название Тип Год сдачи Страниц Цена
Течение пищевых сред в сквозных каналах Курсовая 2009 22 1500
Современные методы и средства защиты информации Курсовая 2010 28 1500
Задачи на наибольшее и наименьшее в геометрии Курсовая 2009 17 1500
Уравнения вида F(y, y’,…,y(n))=0 . Понижение порядка. Решение задачи о погоне. Курсовая 2010 21 1000
Уравнение упругого равновесия Курсовая 2010 42 1500
Разработка схемы аппаратного шифрования по алгоритму DES Курсовая 2010 40 1500
Алгебраические и трансцендентные числа Курсовая 2009 23 1000
Решение задачи о наилучшем использовании ресурсов методами линейного программирования Курсовая 2010 28 1500
Расчет автокорреляционной функции одномерной динамической модели Курсовая 2010 20 1500
Нахождение максимального потока в сети Курсовая 2010 19 1500
курсовые, дипломные, контрольные на заказ скидки на курсовые, дипломные, контрольные на заказ

© 2010-2016, Все права защищены. Принимаем заказы по всей России.