Дипломная работа

от 20 дней
от 9999 рублей

Заказать

Курсовая работа

от 10 дней
от 1999 рублей

Заказать

Реферат

от 3 дней
от 699 рублей

Заказать

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Заказать

Диссертация

Сроки и стоимость индивидуальные

Заказать

Главная - Высшая математика - Курсовая по прикладной математике ГУУ

Курсовая по прикладной математике ГУУ Высшая математика. Курсовая

  • Тема: Курсовая по прикладной математике ГУУ
  • Автор: Сергей Пашков
  • Тип работы: Курсовая
  • Предмет: Высшая математика
  • Страниц: 17
  • Год сдачи: 2004
  • ВУЗ, город: Москва
  • Цена(руб.): 1500 рублей

Заказать персональную работу

Выдержка

ЛИНЕЙНАЯ ПРОИЗВОДСТВЕННАЯ ЗАДАЧА
Предприятие может выпускать четыре вида продукции, используя для этого три вида ресурсов. Известна технологическая матрица А затрат любого ресурса на единицу каждой продукции, вектор В объемов ресурсов и вектор С удельной прибыли
(1)
Требуется составить производственную программу (x1, x2, x3, x4), максимизирующую прибыль
(2)
при ограничениях по ресурсам: (3)
где по смыслу задачи (4)
Получили задачу на условный экстремум. Для ее решения систему неравенств (3) при помощи дополнительных неотрицательных неизвестных х5, х6, х7 заменим системой линейных алгебраических
уравнений (5)
где дополнительные переменные имеют смысл остатков соответствующих ресурсов. Среди всех решений системы уравнений (5), удовлетворяющих условию неотрицательности х10, х20, ,х50,, х70. (6)
надо найти то решение, при котором функция (2) примет наибольшее значение.
Воспользуемся тем, что правые части всех уравнений системы (5) неотрицательны, а сама система имеет предпочитаемый вид дополнительные переменные являются базисными. Приравняв к нулю свободные переменные х1, х2, х3, х4, получаем базисное неотрицательное решение
x1=0, x2=0, x3=0, x4=0, x5=142, x6=100, x7=122 (7)
первые четыре компоненты которого определяют производственную программу x1=0, x2=0, x3=0, x4=0 (8)
по которой мы пока ничего не производим. Из выражения (2) видно, что наиболее выгодно начинать производить продукцию первого вида, так как прибыль на единицу продукции здесь наибольшая. Чем больше выпуск в этой продукции, тем больше прибыль. Выясним, до каких пор наши ресурсы позволяют увеличить выпуск этой продукции. Для этого придется записать для системы уравнений (5) общее решение

Содержание

ЛИНЕЙНАЯ ПРОИЗВОДСТВЕННАЯ ЗАДАЧА
ДВОЙСТВЕННАЯ ЗАДАЧА
ЗАДАЧА О "РАСШИВКЕ УЗКИХ МЕСТ ПРОИЗВОДСТВА"
ТРАНСПОРТНАЯ ЗАДАЧА ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ
ДИНАМИЧЕСКОЕ ПРОГРАММИРОВАНИЕ. РАСПРЕДЕЛЕНИЕ КАПИТАЛЬНЫХ ВЛОЖЕНИЙ
АНАЛИЗ ДОХОДНОСТИ И РИСКА ФИНАНСОВЫХ ОПЕРАЦИЙ

Литература

Нет.

Форма заказа

Заполните, пожалуйста, форму заказа, чтобы менеджер смог оценить вашу работу и сообщил вам цену и сроки. Все ваши контактные данные будут использованы только для связи с вами, и не будут переданы третьим лицам.

Тип работы *
Предмет *
Название *
Дата Сдачи *
Количество Листов*
уточните задание
Ваши Пожелания
Загрузить Файлы

загрузить еще одно дополнение
Страна
Город
Ваше имя *
Эл. Почта *
Телефон *
  

Название Тип Год сдачи Страниц Цена
Интегралы и интегрирование. Курсовая 2008 25 1500
Вычисление определенных интегралов Курсовая 2004 11 1500
Исследовать нелинейное дифференциальное уравнение методом Ван-дер-поля Курсовая 2005 14 1500
Корни многочлена от одного неизвестного Курсовая 2008 19 1500
Решение дифференциально-алгебраической системы уравнений Курсовая 2008 21 1000
Симлекс-метод. Курсовая 2008 30 1100
Исследование прочности на разрыв полосок ситца. Курсовая 2008 20 900
ПЛОСКОСТЬ В ПРОСТРАНСТВЕ. Курсовая 2008 27 900
ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ ФРЕДГОЛЬМА II РОДА. Курсовая 2008 31 1000
Вычисление интегралов. Курсовая 2008 49 1500
курсовые, дипломные, контрольные на заказ скидки на курсовые, дипломные, контрольные на заказ

© 2010-2016, Все права защищены. Принимаем заказы по всей России.