Дипломная работа

от 20 дней
от 9999 рублей

Заказать

Курсовая работа

от 10 дней
от 1999 рублей

Заказать

Реферат

от 3 дней
от 699 рублей

Заказать

Контрольная работа

от 3 дней
от 99 рублей
за задачу

Заказать

Диссертация

Сроки и стоимость индивидуальные

Заказать

Главная - Эконометрика - Теорема Гаусса-Маркова для множественной линейной регрессии

Теорема Гаусса-Маркова для множественной линейной регрессии Эконометрика. Реферат

  • Тема: Теорема Гаусса-Маркова для множественной линейной регрессии
  • Автор: Юлия
  • Тип работы: Реферат
  • Предмет: Эконометрика
  • Страниц: 10
  • Год сдачи: 2009
  • ВУЗ, город: Москва
  • Цена(руб.): 500 рублей

Заказать персональную работу

Выдержка

ВВЕДЕНИЕ Линейная регрессия описывается простейшей функциональной зависимостью в виде уравнения прямой линии и характеризуется прозрачной интерпретацией параметров модели (коэффициентов уравнения). Правая часть уравнения позволяет по заданным значениям регрессора (объясняющей переменной) получить теоретические (расчетные) значения результативного (объясняемого) переменного. Эти значения иногда называют также прогнозируемыми, т.е. получаемыми по теоретическим формулам. Однако при выдвижении гипотезы о характере зависимости коэффициенты уравнения остаются неизвестными. Вообще говоря, получение приближенных значений этих коэффициентов возможно различными методами. Но наиболее важным и распространенным из них является метод наименьших квадратов (МНК). Он основан на требовании минимизации суммы квадратов отклонений фактических значений результативного признака от расчетных (теоретических). Вместо теоретических значений (для их получения) подставляют правые части уравнения регрессии в сумму квадратов отклонений, а затем находят частные производные от этой функции (суммы квадратов отклонений фактических значений результативного признака от теоретических). Эти частные производные берутся не по переменным х и у, а по параметрам а и b. Частные производные приравнивают к нулю и после несложных, но громоздких преобразований получают систему нормальных уравнений для определения параметров. Коэффициент при переменном х, т.е. b, называется коэффициентом регрессии, он показывает среднее изменение результата с изменением фактора на одну единицу. Параметр a может не иметь экономической интерпретации, особенно если знак этого коэффициента отрицателен. ПАРНАЯ ЛИНЕЙНАЯ РЕГРЕССИЯ Парная линейная регрессия используется для изучения функции потребления. Коэффициент регрессии в функции потребления используется для расчета мультипликатора. Практически всегда уравнение регрессии дополняется показателем тесноты связи. Для простейшего случая линейной регрессии этим показателем тесноты связи является линейный коэффициент корреляции. Но поскольку линейный коэффициент корреляции характеризует тесноту связи признаков в линейной форме, то близость абсолютной величины линейного коэффициента корреляции к нулю еще не служит показателем отсутствия связи между признаками. Именно при другом выборе спецификации модели и, следовательно, виде зависимости фактическая связь может оказаться довольно близкой к 1. А вот качество подбора линейной функции определяется с помощью квадрата линейного коэффициента корреляции — коэффициента детерминации. Он характеризует долю дисперсии результативного признака у, объясняемую регрессией в общей дисперсии результативного признака. Величина, дополняющая коэффициент детерминации до 1, характеризует долю дисперсии, вызванную влиянием остальных факторов, неучтенных в модели (остаточной дисперсии). Парная регрессия представляется уравнением связи двух переменных (у и х) следующего вида: y = f(x), (1) где у — зависимая переменная (результативный признак), а х — независимая переменная (объясняющая переменная, или признак-фактор). Бывает линейная регрессия и нелинейная регрессия. Линейная регрессия описывается уравнением вида: y = a + bx + ε . (2)

Содержание

ВВЕДЕНИЕ
Линейная регрессия описывается простейшей функциональной зависимостью в виде уравнения прямой линии и характеризуется прозрачной интерпретацией параметров модели (коэффициентов уравнения). Правая часть уравнения позволяет по заданным значениям регрессора (объясняющей переменной) получить теоретические (расчетные) значения результативного (объясняемого) переменного. Эти значения иногда называют также прогнозируемыми, т.е. получаемыми по теоретическим формулам. Однако при выдвижении гипотезы о характере зависимости коэффициенты уравнения остаются неизвестными. Вообще говоря, получение приближенных значений этих коэффициентов возможно различными методами.
Но наиболее важным и распространенным из них является метод наименьших квадратов (МНК). Он основан на требовании минимизации суммы квадратов отклонений фактических значений результативного признака от расчетных (теоретических). Вместо теоретических значений (для их получения) подставляют правые части уравнения регрессии в сумму квадратов отклонений, а затем находят частные производные от этой функции (суммы квадратов отклонений фактических значений результативного признака от теоретических). Эти частные производные берутся не по переменным х и у, а по параметрам а и b. Частные производные приравнивают к нулю и после несложных, но громоздких преобразований получают систему нормальных уравнений для определения параметров. Коэффициент при переменном х, т.е. b, называется коэффициентом регрессии, он показывает среднее изменение результата с изменением фактора на одну единицу. Параметр a может не иметь экономической интерпретации, особенно если знак этого коэффициента отрицателен.

Литература

СПИСОК ЛИТЕРАТУРЫ:
1. Э. И. Бежава, М.Б. Малютов Введение в теорию планирования регрессионных экспериментов, Московский государственный институт электронного машиностроения, Темплан 1983. В учебном пособии исследуется планирование и анализ линейных регрессионных экспериментов.
2. Ивченко Г.И., Медведев Ю.И. Математическая статистика, Высшая школа, 1992. В пособии на современном научном уровне изложены основные разделы статистической терии.
3. Розанов Ю.А. Теория вероятностей, случайные процессы и математическая статистика, Наука 1985. Книга представляет собой единый учебный курс теории вероятностей, случайных процессов и математической статистики. Изложение материала таково, что книга во многих важных разделах доступна широкому кругу читателей.
4. Замечательным введением в элементарную статистику с разнообразными примерами из медицины и генетики является книга Ю.Неймана Вводный курс теории вероятностей и математической статистики, Наука, 1968 (перевод с английского).

Форма заказа

Заполните, пожалуйста, форму заказа, чтобы менеджер смог оценить вашу работу и сообщил вам цену и сроки. Все ваши контактные данные будут использованы только для связи с вами, и не будут переданы третьим лицам.

Тип работы *
Предмет *
Название *
Дата Сдачи *
Количество Листов*
уточните задание
Ваши Пожелания
Загрузить Файлы

загрузить еще одно дополнение
Страна
Город
Ваше имя *
Эл. Почта *
Телефон *
  

Название Тип Год сдачи Страниц Цена
История эконометрики Реферат 2009 18 500
Следствия мультиколлинеарности Реферат 2010 14 500
Признаки наличия мультиколлинеарности Реферат 2010 12 500
Измерение и экономико-математические модели Реферат 2011 20 500
курсовые, дипломные, контрольные на заказ скидки на курсовые, дипломные, контрольные на заказ

© 2010-2016, Все права защищены. Принимаем заказы по всей России.